Reproducing Hacker News writing style fingerprinting
▼About three years ago I saw a quite curious and interesting post on Hacker News. A student, Christopher Tarry, was able to use cosine similarity against a vector of top words frequencies in comments, in order to detect similar HN accounts — and, sometimes, even accounts actually controlled by the same user, that is, fake accounts used to uncover the identity of the writer. This is the original post: https://news.ycombinator.com/item?id=33755016 I was not aware, back then, of Burrows-Delta method for style detection: it seemed kinda magical that you just needed to normalize a frequency vector of top words to reach such quite remarkable results. I read a few wikipedia pages and took mental note of it. Then, as I was working with Vectors for Redis I remembered about this post, searched the web only to discover that the original page was gone and that the author, in the original post and website, didn’t really explained very well how the data was processed, the top words extracted (and, especially, how many were used) and so forth. I thought I could reproduce the work with Vector Sets, once I was done with the main work. Now the new data type is in the release candidate, and I found some time to work on the problem. This is a report of what I did, but before to continue, the mandatory demo site: you can play with it at the following link: