Redis 2.6

@antirez

vimware




Redis 2.6

® Major new features.

® Based on unstable branch (minus the
cluster code).

Tuesday, May 29, 12



Why a 2.6 release?

® Redis Cluster is a long term project (The
hurried cat produced blind kittens).

® |ntermediate releases: new features in the
hands of developers ASAP.

Tuesday, May 29, 12



Scripting

® Most important feature in this release.
® Changes the game for many applications.
® API is unusual, but ...

® .. practically it is scripts executed server
side.

Tuesday, May 29, 12



Scripting 0]

Uses the Lua programming language.

99% of commands we would code in C, can
now be written as Lua scripts.

Scripts are atomic like real commands.
Scripts are fast, minimal overhead.

Support for JSON and MessagePack.




What scripting fixes

Server side manipulation of data.
Minimizes latency: no RTT payed.
Maximizes CPU usage: no parsing, syscalls.

Simpler, faster alternative to WATCH.




Stored procedures,
fixed.

All the code is client-side.

We always send full scripts (no commands
defined).

But, we can send SHAI's of scripts!

Scripting is Redis Cluster friendly.




Scripting, first example

® EVAL
'redis.call(“SET"”,"key"”,"”"somevalue”)' 0
(nil)

® GET key
somevalue

Tuesday, May 29, 12



Scripting, fixed example

® EVAL 'return
redis.call(“SET” ,KEYS[1],ARGV[1])' 1 key
newvalue
+O0OK

® GET Kkey
newvalue

o KEYS /ARGY are cluster friendly.

® Not enforced if you don’t care about
cluster.

Tuesday, May 29, 12



Scripting, real example

DECR-IF-GREATER-THAN:

local current

current = redis.call('get',KEYS[1])
1f not current then return nil end
current = tonumber (current)
1f current > tonumber (ARGV[1l]) then
return redis.call('decr',KEYS[1])
else
return current
end

EVAL ...body... 1 mykey 10

Tuesday, May 29, 12



Scripting using SHA | s

® EVALSHA

953ed62a3246f2dbd96cdbfc0ec0d92b5c
b2f5a8

® Not defined? -NOSCRIPT No matching

script. Please use EVAL.

® Defined? The script gets executed.

® No bandwidth wasted nor server-side

code.

Tuesday, May 29, 12



Scripting cache ops

e SCRIPT LOAD loads a script.

® SCRIPT FLUSH only way to wipe the
scripting cache.




Bit operations

Redis used to have bit level operations.
SETBIT: set a bit into a string.
GETBIT: get a bit from a string.

Introduced into Redis 2.2.




Bit operations are
awesome.

They make possible what was impossible.

Have 100 million users? Store a bit about
every user in just | | megabytes.

Real time metrics.

Data mining.




Bit ops use case

Million of users in a web app.

Need to know: who visited app in a specific
day.

At every page view do:
SETBIT current day key <ID> 1

| IM * 365 days = 4GB of RAM.




But, are we talking 2.2?

® Redis 2.6 adds more indeed ;)
e BITCOUNT for population counting.
® BITOP to AND,OR,XOR and invert bits.




BITCOUNT key [start end]

® How many users visited the app in a given
day?! BITCOUNT key of this_day.

® With start end: just get ranges, or
accumulate sums incrementally.

e BITCOUNT with Il MB input key: 10
milliseconds.




BITOP (AND|OR|XOR|NOT) target-key
key | key2 key3 ... keyN

® How many users visited the site day | OR
day 2!

® BITOP OR temp key dayl| key day2 key
e BITCOUNT temp key

® Possibilities are infinite!

® BITOP is O(N)! Use a slave if needed.




Milliseconds EXPIRE

Much better keys collection algorithm.

Expires have now millisecond resolution,
instead of one second.

New commands to set or inspect expires
at millisecond level.

PEXPIRE, PTTL, PSETEXPIRE, PEXPIREAT.




| DON'T ALWAYS COUNT
_MiLuisecs

BUT WHENTDO... 1 USE
~ REDIS

—NeMeGeneraiorn:

Tuesday, May 29, 12



Floats increments

® INCRBYFLOAT and HINCRBYFLOAT
commands.

® Reliable output, exponential format never
used, same behavior for 32 and 64 bits.

® Reliable replication and AOF: commands
translated to SET or HSET.




Values serialization

DUMP: turn values into binary blobs.

RESTORE: restore values into a target
Instance.

MIGRATE move keys atomically.

Speed: 43 milliseconds to dump a | million
items list (MBAI I).




Better AOF format

® |t was like:
RPUSH mylist a

RPUSH mylist b
RPUSH mylist c

® Now itis like:
RPUSH mylista b c

® More speed, less space.




Better ziplists

Less memory used for:
Small lists.

Small hashes.

Small sorted sets.

(If very small integers are stored)




More inside 2.6

redis-server --test-memory

Faster with big objects.

INFO split into sections, with more fields.
No limit to max number of clients.

CRC64 checksum in RDB.

Read only slaves... and a lot more.




And now the best
feature ever.

= ) . = Redis 2.5.9 (9a8d51ad/0) 64 bit

4
( ' / .- |, ) Running in stand alone mode

T T = - T Port: 6379
-l T / .= PID: 93034
\_ _ \_ _ \_ / _ _l _ _l
_‘_,:*_,_ o _.-':.-'_ http://redis.io

The ASCII logo...

Tuesday, May 29, 12


http://redis.io
http://redis.io

Status

We are in freeze.

Redis 2.6 RC4 will be released in a few
days.

No known bugs currently, but it is new.
Production? Wait a few more weeks.

Unless you need features. Many are running
2.6 already.




